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Quasi-analytic solution for real-time
multi-exposure speckle imaging of tissue
perfusion
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Abstract: Laser speckle contrast imaging (LSCI) is a widefield imaging technique that enables
high spatiotemporal resolution measurement of blood flow. Laser coherence, optical aberrations,
and static scattering effects restrict LSCI to relative and qualitative measurements. Multi-exposure
speckle imaging (MESI) is a quantitative extension of LSCI that accounts for these factors
but has been limited to post-acquisition analysis due to long data processing times. Here we
propose and test a real-time quasi-analytic solution to fitting MESI data, using both simulated
and real-world data from a mouse model of photothrombotic stroke. This rapid estimation of
multi-exposure imaging (REMI) enables processing of full-frame MESI images at up to 8 Hz
with negligible errors relative to time-intensive least-squares methods. REMI opens the door to
real-time, quantitative measures of perfusion change using simple optical systems.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Laser speckle contrast imaging (LSCI) is a relatively inexpensive widefield imaging method
that allows for assessment of tissue perfusion and vascular flow across entire fields of view with
high spatiotemporal resolution [1,2]. LSCI gives a measure of flow based on speckle contrast,
K, or the degree of blurring of a laser speckle pattern over a spatial region in a time-integrated
image due to moving scatterers. Because of the simplicity of the technique, requiring only a
laser, diffuser or beam expander, optical filter, and camera, LSCI has been used extensively in
neurophysiology for assessing perfusion and functional activity [3]. It has also gained some
traction in clinical applications, such as in burn assessment, dermatology, and surgery [4], where
it provides similar clinical capabilities to laser doppler flowmetry but with additional spatial
information. LSCI, however, is limited to producing qualitative measurements of flow due to
influences from the laser coherence, mismatches between the sensor pixel size and laser speckle
size, and tissue scattering properties, which was addressed by the introduction of multi-exposure
speckle imaging (MESI) [5–9]. In MESI, images with different exposure times are acquired and
fit to a more robust model that accounts for laser coherence and mismatch between speckle size
and pixel sensor size with the normalization parameter, β, for tissue scattering properties with
the fraction of dynamic scattering parameter, ρ, and for directional vs. random scatterer motion
by varying the model of light scattering in the tissue.

Some work has been done to bring quantitative MESI into clinical practice [10], and while
the data acquisition is feasible in a clinical setting, the data analysis requires too much time
to enable the real-time viewing needed for clinical application. The bottleneck for the use of
whole field-of-view MESI in real-time applications is the need to fit speckle contrast values
from multiple exposures at each pixel to models with the four parameters described above to
reconstruct a single MESI image [11], a process that can take several minutes and up several hours
depending on the image size and the machine used. As a result, datasets are typically processed
by restricting analysis to smaller, sparse regions of interest (ROI) over vessels or parenchymal
tissue [12]. We find that processing a 1-megapixel image takes ∼20 minutes using 24 physical
cores for parallel processing. To fit every image set of that size taken over the course of a minute

#493821 https://doi.org/10.1364/BOE.493821
Journal © 2023 Received 21 Apr 2023; revised 23 Jun 2023; accepted 25 Jun 2023; published 10 Jul 2023

Corrected 19 July 2023

https://orcid.org/0000-0002-4558-7402
https://orcid.org/0000-0002-7800-9596
https://doi.org/10.1364/OA_License_v2#VOR-OA
https://crossmark.crossref.org/dialog/?doi=10.1364/BOE.493821&amp;domain=pdf&amp;date_stamp=2023-07-19


Research Article Vol. 14, No. 8 / 1 Aug 2023 / Biomedical Optics Express 3951

at a 3-Hz acquisition rate would require 60 hours, making the use of ROIs for temporal analysis a
necessity. Some methods have used calibrations before or during an imaging session to estimate
the β and ρ terms to improve LSCI estimations [13] or speed up MESI fitting [10,12,14], but have
the limitations of not accounting for spatial or temporal variability in β, caused by differences in
surface roughness [15–18], laser spectrum fluctuations [15,16], optical aberrations [17,18], or
out-of-focus surfaces [17,18], or for temporal variability in ρ from, for example, changes in the
fraction of tissue with flowing blood cells due to a stroke [11]. Other groups have incorporated
machine learning to decrease the time required for processing MESI images [19,20], which offers
vast improvements in speed but can have limitations in reliability and accuracy [21].

Here we propose a quasi-analytic solution, noted as a Rapid Estimation of Multi-exposure
Imaging (REMI), with a modification to incorporate spatial averaging of some parameters denoted
as spatial-REMI (sREMI), to determine the scattering model, estimate the normalization and
fraction of dynamic scattering parameters, and approximate the value of the correlation time
with relatively high accuracy and up to 1500× faster than traditional least-squares fitting. The
increase in speed allows for real-time assessments of perfusion for experimental or surgical
applications after taking a few image sets and can be implemented with a rolling buffer of image
data while omitting the need for prior static calibration. We validate the accuracy of the method
using simulated data, with and without artificial noise, and compare the performance to that of
least-squares fitting for simple and mixed scattering models, demonstrate further improvements
in accuracy and processing time by utilization of logarithmically-spaced exposure times over the
typically-used exposure times, and finally compare the in vivo measurements taken from LSCI,
least-squares fitting, and sREMI in a mouse model of photothrombotic stroke.

2. Theory of laser speckle contrast imaging

For LSCI, coherent light that has reflected off a rough, randomly scattering surface is imaged
on a camera sensor, where the photons interfere constructively and destructively, producing
the bright-dark spots of a speckle pattern. Moving scatterers, namely cells moving through
blood vessels in tissue, introduce temporal fluctuations in this interference pattern which blur
the speckles within the image when integrated over a set exposure time. The degree of blurring
increases with increasing speed of the moving scatterers. Speckle contrast, K, is quantified as

K = σ/⟨I⟩ (1)

where σ is the standard deviation and ⟨I⟩ is the average of the pixel intensities calculated over a
window, usually 5× 5 or 7× 7 pixels in size, that is moved across the image (Fig. 1(A)). The
challenge of speckle contrast imaging is then relating flow speed or tissue perfusion to this speckle
contrast. The fluctuations in light intensity can be described by the electric field autocorrelation
function, g1(τ), given by

g1 (τ) = |⟨E (t)E∗ (t + τ)⟩| /⟨E (t)E∗ (t)⟩ (2)

where E is the complex electric field at time t, and τ is the time delay. Considering light that has
been singly scattered from scatterers moving in random directions, the velocity distribution of
the scattering particles, and therefore g1(τ), follows a negative exponential, or Lorentzian, where

g1(τ) = e−τ/τc (3)

with τc as the correlation time. With faster moving scatterers, the speckle pattern will undergo
more fluctuations and the autocorrelation function will decay sooner, resulting in a decreased
correlation time. While the lineshape in Eq. (3) is not the only possible form of g1(τ), it is
the most commonly used [1,2]. We introduce different lineshapes that reflect multiple optical
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Fig. 1. Laser speckle imaging and fitting examples. (A) Raw laser speckle image (5-ms
exposure, left), and processed speckle contrast image (right). (B) Processed laser speckle
images at varying exposure times from 20 µs up to 500 ms. Scale bar= 200 µm. (C) Different
models are fitted to the speckle contrast data taken from indicated points in A, with the red
point situated on top of a larger surface vessel and the blue point situated over a parenchymal
region. The top row uses the exposure times commonly found in the literature [7,32] from
50 µs – 80 ms, while the bottom row uses 20 logarithmically-spaced exposure times from 20
µs – 650 ms, with all exposures listed in Table S1. Simple-model fitting (sm-MESI) shows
multiple regions of overshoots and undershoots. Mixed-model fitting (mm-MESI) and Rapid
Estimation of Multi-exposure images (REMI) follow the data more closely. (D) Example
MESI images produced using sm-MESI (top left), mm-MESI (top middle), REMI (bottom
left), and spatial-REMI (bottom, middle). Images are 788× 788 pixels. Required processing
times are indicated below the images. 10-pixel-wide line profiles for the ROIs indicated
with yellow lines are displayed for each method to the right. Background was taken as the
bottom 25% of inverse correlation time values and the line profiles were normalized to this
background.
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scattering events and ordered vs. unordered motion of scatterers below, but first consider other
factors.

In practice, the electric field cannot be easily measured to characterize g1(τ). The intensity,
I, of the scattered light, however, is related to the electric field by I = EE∗ [1,9] and can be
measured by a camera sensor. The intensity autocorrelation function, g2(τ),

g2(τ) = | ⟨I(t)I(t + τ)⟩ |/⟨I⟩2 (4)

can be related to g1(τ) through a Siegert relation,

g2(τ) = 1 + β |g1(τ)|
2 (5)

where β accounts for speckle averaging from the mismatch between the sizes of the laser speckles
and sensor pixels [22,23], as well as for imperfect light source coherence [24]. Speckle contrast
was related to the correlation time by Bandyopadhyay et al. [25] by noting that the spatial
variance in intensity, σ2, is related to the second moment of the intensity autocorrelation function
such that

σ2 =
2
T
∫

T
0

(︂
1 −
τ

T

)︂
[g1(τ)]

2dτ (6)

where T is the exposure time. In combining Eq. (1), Eq. (3), and Eq. (6), we get the relation
between speckle contrast and the correlation time

K2 = β
e−2x − 1 + 2x

2x2 , x =
T
τc

(7)

In LSCI, the β term is often determined by calibration to a static phantom. The use of a
single exposure time, T, usually between 1 and 10 ms [26], allows for high temporal resolution
imaging of relative blood flow speed. If the exposure is long enough compared to the anticipated
correlation time, Eq. (7) can be simplified to estimate flow speed as

v ∝
1
τc
=
β

TK2 (8)

LSCI, however, fails to account for scattering by static components, which causes significant
loss in sensitivity to moving scatterers [9,13,27]. To address the limitations of LSCI, the
autocorrelation function, g2(τ) was expanded by Parthasarathy et al [9] to include a scattering
term from non-moving scatterers as

g2(τ) = 1 + β(ρ2 |g1(τ)|
2 + ρ(1 − ρ)|g1(τ)|) (9)

where ρ is the fraction of light that is scattered by moving scatterers (e.g. the fraction of dynamic
scattering), given as If

If+Is with If being the portion of fluctuating light, and Is being the portion of
statically scattered light. The resulting relation to speckle contrast is given by:

K2 = β

(︃
ρ2

e−2x − 1 + 2x
2x2 + 4ρ(1 − ρ)

e−x − 1 + x
x2 + (1 − ρ)2

)︃
(10)

In order to fit the additional parameters, images are taken at multiple exposure times (Fig. 1(B))
with contrast values fit to Eq. (10) as a more quantitative measure in a method known as
multi-exposure speckle imaging (MESI) [5–9]. The nonergodic noise normally added as a
constant can be considered negligible in systems with low readout and sensor noise, or with
additional noise reduction schemes [28].

Work done by Postnov, et al. [29] showed that Eq. (10) worked well for the case of multiple
scattered light from scatterers undergoing ordered movement (which has the same lineshape as
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single scattering from unordered movement), which is seen in larger blood vessels. However, the
model was less sensitive to flow changes in parenchymal tissue, where multiple scattering from
scatterers undergoing unordered movement dominates [30]. Postnov, et al. thus modified g1(τ)
to account for different scattering models [25,30] with single or multiple scattering events, and
for ordered or unordered movement of the scatterers. The electric field autocorrelation function
was adjusted to be

g1(τ) = e−(τ/τc)
n

(11)
where n varies from 2 for single scattering from scatterers with ordered motion (single-ordered
scattering; this is not included in the model here due to the photon mean free path length
being significantly smaller than the size of many vessels, suggesting single scattering is rare
[30]), 1 for single-unordered (a small fraction of the detected light, as single scattering from
deep-lying capillaries is rare [31]), or multiple-ordered scattering (dominant process for scattering
from aligned flow of cells in arterioles and venules), and 0.5 for multiple-unordered scattering
(dominant process for scattering from unaligned flow of cells in capillary networks in the brain
parenchyma) (Fig. S1). In setting n= 0.5, the relation between speckle contrast from parenchymal
regions and correlation time becomes

K2
par = β

⎛⎜⎜⎜⎜⎝
ρ2

e−2
√

x(4x+6
√

x+3)+2x−3
2x2 +

8ρ(1 − ρ)
e−

√
x(2x+6

√
x+6)+x−6

x2 +

(1 − ρ)2

⎞⎟⎟⎟⎟⎠
(12)

while the n= 1 expression for speckle contrast is now used just for multiple-ordered scattering
most commonly seen in vessels in which we rename Eq. (10) as K2

ves. We use a mixed model, as
proposed by Postnov et al. [29], combining Eq. (10) and Eq. (12) as

K2 = (1 − DMU)K2
ves + DMUK2

par (13)

where DMU is equal to 0 for pixels that contain only ordered scattering and 1 for pixels that contain
only unordered scattering. This mixed scattering model (mm-MESI) was shown to be far more
sensitive to alterations in flow, for example in stroke models, as compared to the multiple-ordered,
or single-unordered (n= 1) scattering model (sm-MESI) [29]. In fact, we see that the fit to
speckle contrast from parenchyma is improved over sm-MESI fit using Eq. (10) alone (Fig. 1(C)).
Unlike in previous literature where DMU was set to 0, 0.5, or 1, we allow DMU to have any value
between 0 and 1, accounting for pixel neighborhoods that contain variable fractions of larger
vessels (ordered scattering) and parenchyma (unordered scattering). We maintain a constant τc
due to the term relating to the overall decorrelation time of the laser speckle pattern while DMU
works to alter the lineshape between the two models. While the mixed model approach is not a
perfect implementation of the true g1(τ) lineshape, which lies somewhere in between K2

ves and
K2

par [30], it remains a useful approximation.

3. Principles for rapid estimation of multi-exposure imaging (REMI)

Typically, regression methods seek to iteratively solve many variables simultaneously which
requires many, often repeated, calculations. Our proposed method, REMI, aims to solve for the
unknown variables, those being β, ρ, τc, and DMU, in a specific order using a set of limiting
conditions from the model proposed in Eq. (13), drastically reducing the required number of
calculations. We find REMI leads to fairly optimal fits and output values nearly matching
more computationally intensive least-squares methods (Fig. 1(C)) with sREMI, an extension
incorporating spatial averaging of some parameters, producing images of similar clarity with
fewer unrealistic spikes within the vessel profiles compared to least-squares fitting methods
(Fig. 1(D)).
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To begin, we consider three limiting conditions in Eq. (13): when the exposure time matches
the correlation time (T = τc), when the exposure time is much shorter than the correlation time
(T<<τc) or approaches 0, and when the exposure time is much greater than the correlation time
(T>>τc) or approaches ∞. For the condition where T = τc, x is set to 1 in Eq. (10) and Eq. (12),
which, combined in Eq. (13), gives a value, K2

crit, as:

K2
crit = β

⎛⎜⎜⎜⎜⎝
ρ2

(︂
0.5 − DMU +

6DMU+0.5
e2

)︂
+

ρ(1 − ρ)
(︂

108DMU+4
e − 40DMU

)︂
+

(1 − ρ)2

⎞⎟⎟⎟⎟⎠
(14)

Using the latter two conditions, we get that the lim
x→0

K2 → β and lim
x→∞

K2 → β(1 − ρ)2 which,
combined, allows us to solve for ρ as:

ρ = 1 −

⌜⃓⃓⎷ lim
x→∞

K2

lim
x→0

K2 (15)

Obtaining these limiting conditions in practice is not feasible due to hardware or sacrifices to
acquisition rate. Shorter exposure times are limited by available light or by camera hardware,
meaning that extremely short exposures are not feasible for approximating β. On the other hand,
extending the camera exposure to determine ρ would significantly reduce the resulting acquisition
rate and introduce large amounts of ambient light and sensor noise. To address these physical
limitations, we extrapolate from collected data using the first-order derivative with respect to
ln(T). (The derivative is taken with respect to ln(T), rather than T, to maintain the proportionality
between the exposure time, T, and the correlation time, τc in the equations (see Supplement
1).) In essence, we aim to estimate the remaining difference in speckle contrast between the
shortest and longest acquired image exposures and the extreme limiting conditions (Fig. 2(A) left,
black arrows) by relating these differences to the first-order logarithmic derivative. The resulting
derivatives of Eq. (10) and Eq. (12) yield:

dK2
ves

d ln(T)
= β

(︃
ρ2

e−2x(−x − 1) − x + 1
x2 + 4ρ(1 − ρ)

e−x(−x − 2) − x + 2
x2

)︃
(16)

for multiple-ordered/single-unordered scattering, and

dK2
par

d ln(T)
= β

⎛⎜⎜⎝ρ2
e−2

√
x
(︂
−2x 3

2 − 5x − 6
√

x + 3
)︂
− x + 3

x2 + 8ρ(1 − ρ)
e−

√
x(−x 3

2 − 5x − 12
√

x + 12
x2

⎞⎟⎟⎠
(17)

for multiple-unordered scattering and are represented in Fig. 2(A), right.
When plotting the derivatives, we see noticeable differences in peak amplitude and location of

the peak in the first-order derivative with respect to correlation time for each scattering model
(Fig. S2A). While the peaks appear proximal to where T= τc, the location for the minimum peak
of dK2/d ln(T), noted as Tpeak, is laterally displaced in relation to the true τc between ∼0.8τc and
∼3.3τc depending on the degree of dynamic scattering, ρ, and the scattering type, DMU (Fig.
S2A). Simply finding the peak of the differential will not give the true τc value due to the unknown
displacement induced by the unresolved parameters. To solve for the missing parameters, β and

https://doi.org/10.6084/m9.figshare.23581881
https://doi.org/10.6084/m9.figshare.23581881
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Fig. 2. Underlying principles for implementing REMI. (A) Example plot of the ordered
multiple scattering (red) and unordered multiple scattering (blue) models (left) and their
respective derivatives (right) with example simulated data as white squares. (B) Ratio of
(K2(0)-K2(T)) to the derivative, dK2(T)/d ln(T) (solid line) for extrapolation to determine
the limiting condition setting β, with a simple lowpass fit (dotted line) and the expanded fit
(dashed line). (C) Ratio of (K2(T) – K2(∞)) to the derivative, dK2(T)/d ln(T) (solid line) for
extrapolation to determine the limiting condition setting ρ, with a simple highpass fit (dotted
line) and the expanded fit (dashed line). Solid lines are color-coded to match the scattering
models from A. (D) Flowchart for the REMI algorithm. Numbered steps in the flowchart are
presented in numbered bubbles in A. The gray arrows indicate the optional spatial filtering
of β for sREMI.

ρ, we examine the difference between K2(T) and the limit as T → 0 and T → ∞, whereby:

lim
T→0

(K2) − K2(T) = β − K2(T) (18)

and
K2(T) − lim

T→∞
(K2) = K2(T) − β(1 − ρ)2 (19)

and take the ratio with respect to the slope at the same values of T, defined as dK2(T)/d ln(T)
β−K2(T)

(Fig. 2(B)) and dK2(T)/d ln(T)
K2(T)−β(1−ρ)2

(Fig. 2(C)). When plotted in a log-log space, these relations resemble
simple transfer functions, with both relations reaching a constant value as T approaches 0 for the
former, and as T approaches infinity for the latter (Fig. 2(C), D) which is expected due to the
asymptotic behavior of the curves. While a simple transfer function-like equation, such as 1

1+ajω ,
where the magnitude follows the form of 1√

1+(aω)2
(dotted lines), can be applied to approximate

this relationship, we reach the empirical expansions provided by Eq. (20) and Eq. (21), giving a
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more accurate approximation (Fig. 2(B)-(C), dashed lines):

dK2/d ln (T)
β − K2 ≈ −

⎛⎜⎜⎝
DMU

1
2√

1+1.034γ0.5+0.998γ+0.0849γ1.5+0.00943γ2
+

(1 − DMU)
1√

1−0.0451γ0.5+1.851γ−1.129γ1.5+1.346γ2

⎞⎟⎟⎠ = B0 (γ) (20)

dK2/d ln(T)
K2 − β(1 − ρ)2

≈ −

⎛⎜⎜⎜⎝
DMU

√︃
0.233γ

√
1+0.982γ0.5+0.754γ+0.00441γ1.5+(0.233γ)2

+

(1 − DMU)
0.918x√

1−0.0013γ0.5+1.166γ−0.170γ1.5+(0.918γ)2

⎞⎟⎟⎟⎠ = B∞(γ) (21)

(In Eq. (21), the unordered scattering term undergoes a square root due to the prominence of the
e−

√
x terms as T exceeds τc.) In the above equations, γ is a ratio between the exposure time, T,

and some time parameter. If the time parameter is set to τc where γ= x, the theoretical decay
curves undergo a ρ-dependent lateral displacement with respect to x (Fig. S2B, C). We find that
Tpeak also shifts along the x-axis in a ρ-dependent manner and by setting γ = T/Tpeak, the decay
curves from Eq. (20) and Eq. (21) each align across different values of ρ. It appears that the
lateral displacements in Tpeak closely match those of the curves seen in Fig. S2B, C (although
this cannot be confirmed analytically), which makes the use of the first-derivative peak location a
reliable keystone for this approximation method. Rearranging Eq. (20) and Eq. (21) to solve for
the limiting conditions gives:

lim
T→0

K2 = β = K2(Tshort) +
dK2(Tshort)/d ln(T)

B0(γshort)
(22)

lim
T→∞

K2 = β(1 − ρ)2 = K2(Tlong) −
dK2(Tlong)/d ln(T)

B∞(γshort)
(23)

Which allows us to estimate the T = 0 and T = ∞ limiting conditions with available data. Here,
Tshort and Tlong are the shortest and longest valid exposures for which values exist for both the
speckle contrast, K2(T), and for the derivative, dK2(T)/d ln(T), and γshort and γlong are the ratios
of Tshort and Tlong to Tpeak, respectively. Once the limiting conditions are known, K2

crit can be
calculated using Eq. (14) and the correlation time of the dataset can be determined by simple
interpolation.

4. Implementation of REMI

From Eq. (14), approximation of K2
crit where T= τc requires estimation of the scattering model,

DMU , the fraction of dynamic scattering, ρ, and the normalization factor, β. From Eq. (20) and
Eq. (21), β and ρ can be estimated only when DMU and Tpeak are known. Of these, Tpeak is the
first variable that can be determined simply by locating the minimum peak location of dK2/d ln(T)
(Fig. 1(B)). We use Tpeak in Eq. (22) and Eq. (23) to approximate β and ρ assuming DMU = 0,
then compare the minimum amplitude of dK2/d ln(T) to the theoretical minimum of Eq. (16) and
Eq. (17) using the estimated terms. DMU is then set to a value between 0 and 1, determined by
the distance between dK2(Tpeak)/d ln(T) and the theoretical amplitudes for the two scattering
models (Fig. 2(A) right, curly bracket). Once the scattering model is determined, the limiting
conditions of lim

x→0
K2 and lim

T→∞
K2 are estimated by using Eq. (22) and Eq. (23), now with the

appropriate DMU , and β is set to lim
x→0

K2, while ρ is calculated using Eq. (15). At this point, the
scattering model, DMU , the fraction of dynamic scattering, ρ, and the normalization constant, β,
have been solved. These parameters enable the use of Eq. (14) to set the K2

crit value which equals
K2(T) when T= τc,, allowing for simple interpolation to solve. We provide more details on some
of the critical steps in this process in the rest of this section.
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4.1. Pre-processing discrete data

Laser speckle image data can be noisy, especially with fewer averaged speckle contrast images
per exposure. Differentiating noisy discrete data only further exacerbates the noise. To reduce
noise, the discrete data needs to be filtered in some way, but filtering can often suppress important
higher frequency features. To balance this, we use a 1:4:1 weighted moving average filter for
evenly-spaced exposures in the logarithmic domain, or a weighted, nonuniform moving average
for unequally-spaced typical exposure times [32] (see Table S1; see Supplement 1 for details on
nonuniform moving average filter). The central difference of the filtered data is then taken over
intervals of ln(T) to achieve a semilogarithmic derivative. To further reduce noise, the derivative
is filtered again using a simple 3-point moving average filter for equally spaced exposure times or
a weighted-moving average filter for unequally spaced data with a width of 1 decade. Unequally
spaced data is resampled using the filtered differential to interpolate and align the exposure times
where the central difference is calculated for further operations.

4.2. Determining the scattering model and the unsolved parameters

To determine the scattering model, we first need to find the steepest point of the slope of the
speckle contrast, K2, to determine Tpeak. The exposure time values of the most negative value of
dK2/d ln(T) and the closest two surrounding points are used in a quadratic Newton interpolation
polynomial while setting the derivative of the polynomial to 0 to locate Tpeak. dK2(Tpeak)/d ln(T)
is determined by setting Tpeak as the interpolation point of the polynomial. As a moving average
filter is expected to attenuate the peak of the differential, we increase the amplitude by 5%,
determined empirically, to compensate in the next 2 steps. We set γ as the ratio of Tpeak to the
shortest valid exposure time, Tshort, for Eq. (22) and the ratio of Tpeak to the longest valid exposure
time, Tlong, for Eq. (23). (Note, because we take the central difference of the discrete speckle
contrast data, we cannot calculate dK2/d ln(T) at the absolute shortest and longest exposure
times taken during acquisition, and instead use exposure times that are one step longer or shorter
than the shortest or longest exposure time taken, respectively.) While assuming DMU = 0 in Eq.
Equation (20) and Eq. (21) we approximate K2(0) and K2(∞), respectively. Equation (1)5 is then
used to solve for ρ.

To determine the correct scattering model, we compare dK2(Tpeak)/d ln(T) to the theoretical
max negative slope for both DMU conditions. Repeatedly solving for these minimum values in
Eq. (16) and Eq. (17) for comparison is computationally expensive. However, the peak value,
when holding DMU constant, only depends on ρ and is scaled by β. This simplification allows for
empirically computing the peak values for both DMU = 0 and DMU = 1 as a function of ρ from 0 to
1 and fitting a polynomial for reference (this paper used a 10th order polynomial; see Supplement
1 for polynomial expression). In this way, we can now pass an M×N matrix of ρ values and
output two M×N matrices of peak values for comparison with low computational overhead. We
predict β and ρ using Eq. (16) and Eq. (17) while letting DMU = 0 and calculate the theoretical
peak amplitudes for DMU = 0 and DMU = 1 using ρ and β with the polynomial fits. The scattering
model DMU is then given as the distance of dK2(Tpeak)/d ln(T) from the theoretical peak in the
DMU = 0 condition divided by the distance between the theoretical peaks for the DMU = 0 and
DMU = 1 conditions, bounded between 0 and 1 (Fig. 2(A); right, bubble 4).

4.3. Spatially averaging β for spatial-REMI (sREMI)

Up to this point, all data is processed in a pixel-by-pixel manner, incorporating no spatial
information, which can result in significant salt-and-pepper noise (Fig. 1(D), bottom-left). The
normalization constant, β, is expected to vary slowly across the field-of-view due to optical
aberrations and defocus across the imaging field. Therefore, β can be spatially filtered to reduce
salt-and-pepper artifacts (Fig. 1(D), bottom-right). Equation (2)2 is used with the first estimate
of DMU to calculate an initial β. A gaussian filter with a width of at least 10% of the image field

https://doi.org/10.6084/m9.figshare.23581881
https://doi.org/10.6084/m9.figshare.23581881
https://doi.org/10.6084/m9.figshare.23581881
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is applied to the estimated β. We then re-estimate the scattering model, DMU , as outlined above,
using the spatially filtered K2(0) when initially setting DMU = 0 (Fig. 2(D), dashed outline).

4.4. Interpolation of the correlation time, τc
Once the scattering model has been determined, we re-evaluate ρ using Eq. (23), setting DMU
at the inferred value. The “true” β and ρ are applied in Eq. (14) to determine the K2

crit values
for which T= τc. For strong static scattering regions, K2

crit is taken as the minimum of K2
crit and

β/
√

2 to prevent falsely high flow rate measurements due to a near-zero slope produced by very
low dynamic scattering (ρ< 0.2; empirically, this limit was only reached with completely static
scatters, such as a piece of paper). We run a simple linear interpolation using two points that
bound K2

crit to get our final estimate of the correlation time. The first bounding point takes the
index, idx, of the last speckle contrast value greater than K2

crit for each pixel. The next index,
idx+ 1, then acts as the second bounding coordinate for the interpolation:

log(τc) = (K2
crit − K2

idx)
log(Tidx+1) − log(Tidx)

K2
idx+1 − K2

idx
+ log(Tidx) (24)

If the longest exposure remains above K2
crit, the last two indices are used for the interpolation. On

the other hand, if the first value is already below K2
crit, the first two indices are used.

5. Results

5.1. Performance on simulated data

We applied mm-MESI least-squares fitting (e.g. to Eq. (13), sm-MESI least-squares fitting
(e.g. to Eq. (10), REMI, and sREMI to simulated data produced using Eq. (13) with either
the traditional exposure times or log-spaced simulated exposure times from Table S1. Parallel
processing with 24 workers was utilized only for the least-squares fitting methods. Testing
datasets used Eq. (13) to produce 3D matrices where 1/τc was varied from 10°−105 s−1 along
one axis, ρ was varied from 0.5-1 along the second axis, and the exposure time, T, comprised
the third axis (Fig. S3A). β was held as 0.10 while DMU was set as 0 or 1 to create separate
matrices. To test sREMI, a spatial map for 1/τc was produced while holding β at 0.10 and
spatially randomizing ρ continuously and DMU as a binary (Fig. S3B). For testing the impact of
noise, artificial uniform noise of ±5% of the true value of the resulting speckle contrast value
was applied across the 3D matrix. Initial estimates for least-squares curve fitting used values of
β=0.12, ρ=0.9, τc= 0.001. We additionally set the initial estimate of DMU as 0.5 for mm-MESI.

For mm-MESI, fitting of the parameters was highly accurate from the shortest exposure time
to the second longest exposure time and maintained this accuracy for both scattering models
(Fig. 3(A), S4A). β and ρ began to deviate at correlation times below the shortest exposure
time while ρ also deviated above the second longest exposure time. The effects of both were
mirrored in errors in the estimation of the correlation time. With sm-MESI, estimations of all
the parameters were improved over mm-MESI for multiple-ordered scattering when DMU = 0
(e.g. as we would find in a vessel) but highly deviated for multiple-unordered scattering when
DMU = 1 (e.g. as we would find in a parenchymal region), as expected (Fig. 3(B), S4A). REMI
had decent accuracy for correlation times between 10−4 and 10−2 s (Fig. 3(C), S4C) with slightly
better estimates for multiple-ordered scattering as compared to multiple-unordered scattering.
Estimation of β and ρ were accurate over a narrower range of correlation times as compared to
mm-MESI, which, in turn, impacted the range over which the correlation time could be reliably
estimated. Using evenly-spaced logarithmic exposure times led to significant improvements in
REMI-based estimates of each parameter over the “traditionally used” unequally-spaced exposure
times, in particular for the multiple-unordered scattering model (Fig. 3(D), S4D). By applying
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a spatial Gaussian filter (size= 5002 pixels, σ= 250 pixels) to spatially smooth β in sREMI,
accuracy for estimations of the correlation time significantly improved and the range of accuracy
(within 20% of true value) was extended to the shortest exposure time, the accuracy for the
estimation of β was expanded across all exposure times, and accuracy for the estimation of ρ was
extended to correlation times below the shortest exposure time (Fig. 3(E), S4E). In summary,
REMI, and especially sREMI, produce nearly as accurate an estimate of 1/τc, β, and ρ as with
the full mixed-model least-squares approach, with slightly higher errors in 1/τc and β in regions
with high flow speeds (with REMI, but not sREMI) and slightly higher errors in 1/τc and ρ in
regions with low flow speeds (with both REMI and sREMI).

The mixed-model least-squares fitting method had a slightly higher accuracy and maintained
that accuracy over a broader range of correlation times, as compared to REMI, but took
700-1400× longer to process with 106 pixels and 15 exposures, depending on the unequal or
logarithmic spacing of the exposure times (Fig. 4). When varying the image size from 642−20482

pixels and number of exposures from 10-25 logarithmically-spaced exposure times, the time for
least-squares fitting for both models showed a near-linear dependence on the number of pixels
with a small influence by the number of exposures, while REMI was equally dependent on the
number of pixels and exposure times. With evenly, logarithmically spaced exposure times, and
using the compiled filtering convolution function, the exponent for the dependence on the number
of exposures was further reduced to ∼0.5. The resulting correlation coefficients between true and
estimated τc and the respective processing time coefficients for each method are given in Table 1.

Table 1. Correlation coefficients between the true τc and the estimated τc for each method and the
processing time required based on the number of pixels and exposure times as A NB

pix NC
exp .

R2 (clean) R2 (noisy) Processing Coefficients

Method Ves Par Mix Ves Par Mix A (ms) B C

mm-MESI 1.0000 1.0000 1.0000 0.9705 0.9159 0.9262 1.70 0.924 0.092

sm-MESI 1.0000 0.9426 0.7150 0.9820 0.9172 0.7026 1.73 0.899 0.048

REMI 0.9807 0.9790 0.9165 0.9699 0.9075 0.8767 9.06e-6 1.112 1.240

REMI-log 0.9934 0.9821 0.9149 0.9542 0.6942 0.8018 3.26e-5 1.106 0.542

sREMI-log 0.9923 0.9695 0.9188 0.9539 0.6465 0.7786 4.55e-6 1.271 0.442

5.2. Comparison between methods in a mouse model of photothrombotic stroke

To test the utility of REMI in vivo, a mouse was imaged on a custom setup under anesthesia
with respiratory rate and heart rate monitored by a piezoelectric sensor [33] while inducing a
photothrombotic occlusion in an arteriole using Rose-Bengal solution and illumination by a green
laser with full-width half-max diameter of ∼500 µm at the brain surface (Fig. 5(A)) [34–36].
The imaging setup consisted of a 785-nm laser diode (LD785-SEV300, ThorLabs) which passes
through an acousto-optic modulator (AOM; AOMO 3100-125, Gooch & Housego) driven by a
radiofrequency (RF) driver (1110AF-AEFO-1.5, Gooch & Housego) to modulate the diffracted
laser power. The beam is then expanded for illumination over the sample. An Arduino Uno
microcontroller, which communicated with a custom MATLAB program for image acquisition,
set the voltage of the RF driver to adjust the amplitude of the diffracted laser beam and gated the
pulses of light and camera acquisition using a specialized circuit board. Laser speckle images
were collected through a 4× 0.28 NA objective (XLFluor, Olympus), 792/64-nm bandpass filter
(AVR-optics) and a linear polarizer (ThorLabs) and onto a CMOS camera (aca2040-90umNIR,
Basler). Due to camera hardware limitations, for exposures less than 50 µs, the camera was
triggered for 50 µs while the laser light was pulsed for the shorter exposure time. The TTL
signals to the camera, output voltage to the RF driver, piezoelectric sensor signal, and marked
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Fig. 3. Performance of processing methods on simulated data. Plots of estimated correlation
times, τc (left), the normalization coefficient, β (middle), and the fraction of dynamic
scattering, ρ (right), each normalized to the true value, vs. true correlation times for
(A) mm-MESI, (B) sm-MESI, (C) REMI using typical exposure times, (D) REMI using
logarithmically spaced exposure times, and (E) sREMI using logarithmically spaced exposure
times. Red traces correspond to multiple-ordered scattering data; blue traces correspond to
multiple-unordered scattering data. Shaded regions represent standard deviations. Vertical
dashed lines represent the bounds set by the exposure times.
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Fig. 4. Time required for each processing method on 1000× 1000-pixel images for
commonly used nonuniformly spaced exposure times and for uniform, logarithmically
spaced exposure times.

trigger signals indicating green light exposure were recorded on a DAQ board (USB-6001,
National Instruments) for synchronization. We applied the different processing methods to image
data taken from the mouse during repeated photothrombotic strokes. ROI were selected using
LSCI analysis of the 4-ms exposures from the dataset before and after induction of the stroke.
Correlation times were determined for mixed-model fitting by using Eq. (13), simple-model
fitting by using Eq. (10), and LSCI by using Eq. (8) with the 4-ms exposure images, while setting
β as the average value from mixed-model fitting.

To create a vessel occlusion, we used an initial exposure to green laser light of 60 s at an
average power of 1 mW, which induced a partial, transient occlusion, then waited some time
before inducing a full occlusion by exposure to an increased average green laser power of 2 mW.
Average maps before and after photothrombotic occlusions with overlaid ROIs were produced
using 100 frames from sREMI outputs (Fig. 5(B), (C)). Movies of 3-point moving average
frames produced using sREMI with a spatial Gaussian filter (size= 1012 pixels, σ = 50 pixels)
on a 5-point moving average of speckle contrast images are shown in Visualization 1 (partial
occlusion) and Visualization 2 (subsequent, full occlusion) with whole field-of-view maps of
correlation times (τc, left), normalization parameter (β, top-right), dynamic scattering fraction (ρ,
middle-right), and the scattering model (DMU, bottom-right). The fraction of dynamic scattering
is seen to decrease slightly during the first, mild photothrombotic stroke (Visualization 1) with the
second occlusion producing a significant decrease in the fraction of dynamic scattering (Fig. 5(B),
C panel iii) and a notable transition between scattering models due to decreased contribution
from multiple, ordered scattering after the surface arteriole was fully clotted (Fig. 5(B), C panel
iv) (Visualization 2).

All methods were able to capture flow changes during the transient occlusion with 1 mW
and following the full occlusion at 2 mW in the targeted arteriole (Fig. 5(D)), but the estimated
magnitude of the flow decrease varied by method. After the 1-mW irradiation, there was a
noticeable, transient drop in flow in the targeted arteriole that returned to baseline in a couple
minutes (Fig. 5(D), top), indicating a partial occlusion that was released upon termination of
the light exposure. Mixed-model fitting and sREMI estimated the flow speed decrease in the
arteriole to be 17% and 18%, respectively, while simple-model fitting estimated a 15% reduction
and LSCI estimated the drop to be ∼41%. With 2 mW of green light exposure, mixed-model

https://doi.org/10.6084/m9.figshare.22670044
https://doi.org/10.6084/m9.figshare.22670047
https://doi.org/10.6084/m9.figshare.22670044
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Fig. 5. Processing of speckle images from a mouse model of photothrombotic stroke. (A)
Simplified schematic of multi-exposure speckle imaging setup. A microcontroller controls
pulse duration and the amplitude of the transmitted laser power through the acousto-optic
modulator (AOM) as well as camera exposure times for speckle imaging. The data acquisition
(DAQ) board records signals for post-imaging synchronization. Neutral density (ND) filters
set the power of the green laser used to produce the photothrombotic stroke, while optical
cleanup filters extinguish residual infrared light to prevent interference with the laser speckle
imaging. Maps produced by sREMI before (B) and after (C) photothrombotic stroke (green
X), showing correlation time (i), normalization coefficient (ii), fraction of dynamic scattering
(iii), and scattering model coefficient (iv) with selected ROIs over arterioles (red), venules
(blue), and parenchyma (yellow) indicated on the correlation time maps. Scale bar is 200
µm. Greyscale bars are consistent across B and C. (D) Traces of changes in perfusion from
indicated ROIs in arterioles (top), venules (middle), and parenchyma (bottom) as measured
using mm-MESI, sm-MESI, LSCI, and sREMI from left to right during photothrombotic
stroke (green bars) using a 10-point moving average to minimize fluctuations from heart rate.
(E) Scatter plot of inverse correlation times from ROIs placed over arteriole (red), venule
(blue), and parenchymal (black) regions between LSCI (left), simple-model fitting (middle),
and sREMI (right) and mixed-model fitting. (F) Distribution of relative errors from LSCI
(left), simple-model fitting (middle), and sREMI (right) measurements with mixed-model
fitting as ground truth.
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fitting and sREMI measured a reduction of 68% and 66%, respectively, in the targeted arteriole
from the initial baseline. Simple-model fitting showed a decrease of 60% while LSCI indicated a
reduction of 72% from the initial baseline.

To quantify the degree of agreement between methods, we examined the correlation between the
inverse correlation times across models, taking the mixed-model least-squares results as ground
truth. The simple-model fitting had the overall highest correlation coefficient to the mixed-model
fits (R2 = 0.9823; Fig. 5(E), left), but there were large relative errors, with a bimodal distribution:
3.9± 2.9% and 20± 7.4% for the two peaks, respectively (Fig. 5(F), left). In comparison to the
mixed-model, the simple-model fitting tended to overestimate flow magnitude in parenchymal
regions and in occluded vasculature, leading to the peak at ∼20% error (Fig. 5(F), middle). LSCI
estimations of flow tended to be significantly slower than the mixed-model estimates for all ROI
types and had the lowest correlation (R2 = 0.7648; Fig. 5(E), middle) and largest errors relative
to the mixed-model, again with a bimodal distribution: −52± 10% and −76± 5.6% (Fig. 5(F),
middle). sREMI showed a high degree of correlation with the mixed-model least-squares fit in
flow changes for all types of ROIs (R2 = 0.9785; Fig. 5(E), right), and had the lowest relative
error of 2.6± 6%, with a normal distribution for this error (Fig. 5(F), right).

6. Discussion

In this paper, we have devised an algorithm that allows for real-time processing of multi-exposure
speckle images without the need for least-squares fitting. We validate the efficacy of the algorithm
on simulated data, further improve performance using uniform logarithmic exposure times
compared to typically used exposure times, and accurately track changes in a mouse during
photothrombotic stroke while using mixed-model least-squares fitting as a ground truth.

While REMI is shown to be much quicker than the least-squares fitting approaches, it comes
with the drawback of being more influenced by signal noise. As seen in Fig. 1(D), there is
prominent salt-and-pepper noise present due to some pixels having higher variability in speckle
contrast at the shorter exposure times, resulting in a noisy estimation of β. By applying a spatial
filter to β, due to the slow variations expected across the field of view and as we do with sREMI,
the high variability at the shortest exposures is eliminated and thus a significant portion of the
salt-and-pepper noise is removed (Fig. 1(D)). Additionally, we note an increase in vessel clarity
compared to that of least-squares fitting, as evidenced by less unrealistic spiking across the
vessel profile. Averaging multiple subsequent REMI or sREMI output images further reduced
fluctuations to appear as in Fig. 5(B), C. While some salt-and-pepper noise persists with sREMI,
the noise can be remedied with a 5× 5, or similar, median filter. We note that in the presence
of noise during simulations, the performance of sREMI appears very similar in performance
to mm-MESI least-squares fitting (Fig. S4A, E), which is further corroborated by the high
correlation and low relative error in the estimates of correlation times for the stroke model
(Fig. 5(E)-(F), right). The range of correlation times where we find high agreement to the ground
truth using sREMI based on simulations also matches well with reported inverse correlation
times found for parenchymal tissue and moderately sized blood vessels in mice [8,12], further
emphasizing the utility of this method in research applications requiring real-time evaluation.

Unlike least-squares regression methods, REMI allows for estimation of all pixels in an
image in a near-real time, or real-time, manner. The time required for REMI to operate scales
near-linearly with the number of pixels and exposure times when using non-logarithmically
spaced data, such that a 512× 512× 15 matrix takes ∼0.25 s to process. A major limitation in
speed comes from the nonuniform moving average filter across exposure times applied to the
original data as well as the first-order differential using the uncompiled processing in MATLAB.
We improved speed by equally spacing the exposure times on a logarithmic scale and applying a
lower-level convolution function to filter the data, which reduces the processing time by half to
∼0.12 s for a 512× 512× 15 matrix. The processing time difference between sREMI and REMI



Research Article Vol. 14, No. 8 / 1 Aug 2023 / Biomedical Optics Express 3965

is near-negligible (Fig. 4, Table 1), influenced primarily by the size of the Gaussian filter for
spatially filtering β. As REMI calculations are done across all pixels in parallel, the algorithm is
slowed by memory allocations for large matrices associated with larger images, meaning that
least-squares fitting methods would eventually take less time to run, though this only begins to
occur at unreasonable image sizes on the order of megapixel to gigapixel side lengths. Of course,
the image size for nonlinear least-squares regression methods to match the speed of REMI will
also change with available parallel processing capabilities. In this study, we used 24 workers in
parallel to match the total number of physical cores of the processing machine. Without parallel
processing by multiple simultaneous workers, the difference in processing times would be much
larger.

Of the parameters fit, the β term is expected to vary the least between samples and across
the image field, and can be approximated using images from a static phantom. The impact on
processing time by fixing β, however, was negligible. Similar to previous work [17,18,37], we
also found that different static surfaces and surface curvature led to slightly different speckle
contrast values and, while the laser wavelength and temperature were stabilized, we noticed small
fluctuations in the speckle contrast over time likely due to fluctuations in the laser coherence
length (data not shown). Based on these findings, we omitted an initial calibration and allowed
for β to vary spatially and temporally for all fitting models.

More commonly used single-exposure LSCI is a fast and simple alternative to the quantitative
multi-exposure speckle imaging approach, but it comes with the drawback of not being able to
account for changes in static scattering, causing significant errors in flow measurements. During
the mild photothrombotic stroke, flow reductions were estimated by LSCI to be much larger
than with any other method. The errors are largely due to the inability of LSCI to account for
changes in the fraction of dynamically scattered light that comes from moving scatterers and not
accounting for a shift toward unordered scattering at the site of a vessel occlusion (Fig. 5(B), C
panel iii). We find that a relative reduction in the fraction of dynamic scattering by ∼5%, as we
saw during the mild stroke, results in a ∼20% underestimation of flow by LSCI. Not allowing
the scattering model to change from more ordered to more unordered scattering, which was
observed after the full occlusion at the location of the targeted vessel, results in an additional
∼15% reduction in the LSCI flow estimate. Based on Monte-Carlo simulations, the laser speckle
signal integrates scattering signals from up to 700 µm below the tissue surface [31]. As the
green laser light did not occlude the surface arteriole and flow speed in the arteriole returned to
baseline following termination of the green laser light illumination, it is possible that the initial
photothrombotic occlusions were restricted to the capillaries just beneath the surface, leading to
fewer moving and more static scatterers but leaving the network largely unaffected. The result
would be a decrease in the dynamic scattering coefficient while holding the correlation time near
constant or only slightly reduced, leading to errors in LSCI flow speed estimation. The sREMI
approach applied to this data tracked these changes and produced estimates that closely matched
the mixed model, least squares approach.

Machine learning approaches can simplify and speed up computation of complex problems and
are generally great for classification purposes and pattern recognition, and have been applied for
the estimation of flow from MESI images [19,20]. While versatile, machine learning approaches
often require extensive training data and can risk overfitting to the training data, leading to errors
when confronted with information outside the training sets [21]. Due to the “black box” behavior
of machine learning approaches, it can also be difficult or impossible to determine the origin
of any resulting errors [21]. Finally, training the algorithm on data from one system will likely
lead to system-dependent accuracy, requiring retraining of the algorithm after modifying the
system [21]. As such, having an algorithm with known inputs and processing steps, and that is
system-independent can lead to more reliable outputs and easier identification of errors, even if
the time required for processing is slightly longer.
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7. Conclusion

This paper demonstrates a method for quasi-analytically approximating the correlation times
for MESI images in a rapid and reliable manner, with close agreement with the output from
least-squares approximations, without the need for pixel-by-pixel curve fitting, removing a
significant bottleneck for real-time viewing. The up to 1500× reduction in processing time
allows for monitoring of blood flow changes in real time in clinical and research settings without
extensive equipment or machine learning. With proper parallelization, an image set can be
recorded, while converting a previous set to speckle contrast images and processing to MESI
images then have all outputs displayed with no noticeable delays. All MATLAB code for the
implementation of REMI and sREMI, as well as the example data from Fig. 1, is available on
GitHub [38].
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